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Abstract. This paper presents the first numerical solution to the non-linear evolution equation for diffrac-
tive dissociation processes in deep inelastic scattering. It is shown that the solution depends on one scaling
variable τ = Q2/QD2

s (x, x0), where QD
s (x, x0) is the saturation scale for the diffraction processes. The de-

pendence of the saturation scale QD
s (x, x0) on both x and x0 is investigated, (Y0 = ln(1/x0) is the minimal

rapidity gap for the diffraction process). The x-dependence of QD
s turns out to be the same as the one of

the saturation scale in the total inclusive DIS cross section. In our calculations QD
s (x, x0) reveals only a

mild dependence on x0. The scaling is shown to hold for x � x0 but is violated at x ∼ x0.

1 Introduction

Diffractive inclusive production in deep inelastic scatter-
ing (DIS) at high energy has become an area of particular
interest to experts, since it provides a deeper insight into
the dynamics of QCD in the kinematic region where the
density of partons is expected to be high (see [1] and the
references therein).
Inclusive diffraction in DIS offers an opportunity to

probe the transition region between “soft” and “hard” in-
teractions giving natural estimates for the value of the
shadowing corrections in DIS, namely ∆F2 = F2 −
FDGLAP
2 = FD

1 as was firstly shown in [3] on the basis
of the AGK cutting rules [4]. A more detailed approach
started with the Kovchegov–McLerran [5] formula which
expresses the ratio of the diffraction cross section (σdiff)
to the total cross section (σtot) in DIS initiated by the
quark–antiquark pair produced in γ∗ → q+ q̄ decay of the
virtual photon. This formula reads

R =
σdiff
σtot

(1.1)

=
∫
d2b

∫
dz
∫
d2r⊥P γ∗

(z, r⊥;Q2)N2(r⊥, x; b)
2
∫
d2b

∫
dz
∫
d2r⊥P γ∗(z, r⊥;Q2)N(r⊥, x; b)

,

where N(r⊥, x; b) is the imaginary part of the elastic
dipole–target amplitude for a dipole of the size r⊥ scat-
tered at fixed Bjorken variable x = Q2/W 2 (Q2 is the

a e-mail: leving@post.tau.ac.il
b e-mail: mal@techunix.technion.ac.il
1 FD is the diffractive structure function introduced in [2]

photon virtuality and W is its energy in the target rest
frame) and at fixed impact b. P γ∗

(z, r⊥;Q2) is the prob-
ability to find a quark–antiquark pair with size r⊥ inside
the virtual photon [6,7]:

P γ∗
(z, r⊥;Q2)

=
αemNc

2π2

∑
f

Z2
f

∑
λ1,λ2

{|ΨT|2 + |ΨL|2}

=
αemNc

2π2

∑
f

Z2
f

{
(z2 + (1− z)2)a2K2

1 (ar⊥)

+4Q2z2(1− z)2K2
0 (ar⊥)

}
, (1.2)

where in the quark massless limit a2 = z(1 − z)Q2. The
functions ΨT,L stand for transverse and longitudinal po-
larized photon wave functions. Equation (1.1) is impor-
tant since it provides a relation between the dipole–target
elastic amplitude and the cross section of the diffraction
dissociation. A non-linear evolution equation was derived
for the former [8–14]. This equation has been studied both
analytically [14,15] and numerically [13,16–18].
The formula (1.1) fails to describe correctly the ex-

perimental data on the diffraction production. Moreover,
inclusion of an extra gluon emission in the initial virtual
photon wave function is still insufficient to reproduce the
data [19–22]. Nevertheless, (1.1) can be viewed rather as
the initial condition to a more complicated equation.
The non-linear equation for the diffraction dissociation

processes can be written for the amplitude ND which has
the following meaning [23].
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We introduce the cross section for diffraction produc-
tion with the rapidity gap larger than given Y0 ≡ ln(1/x0):

σdiff(x, x0, Q2) (1.3)

=
∫
d2r⊥

∫
dzP γ∗

(z, r⊥;Q2)σdiff
dipole(r⊥, x, x0),

and

σdiff
dipole(r⊥, x, x0) =

∫
d2bND(r⊥, x, x0; b). (1.4)

The function ND is the amplitude of the diffraction
production induced by the dipole with size r⊥ with ra-
pidity gap larger than given (Y0). Note that the minimal
rapidity gap Y0 can be kinematically related to the maxi-
mal diffractively produced mass: x0 = (Q2 +M2)/W 2.
The non-linear evolution equation for ND was derived

in [23] and recently rederived in [21]:

ND(x01, Y, Y0; b) (1.5)

= N2(x01, Y0; b)e−(4CF αS/π) ln(x01/ρ)(Y −Y0)

+
CFαS

π2

∫ Y

Y0

dye−(4CF αS/π) ln(x01/ρ)(Y −y)

×
∫

ρ

d2x2
x2

01

x2
02x2

12

[
2ND

(
x02, y, Y0; b − 1

2
x12

)

+ND
(

x02, y, Y0; b − 1
2
x12

)

×ND
(

x12, y, Y0; b − 1
2
x02

)

−4ND
(

x02, y, Y0; b − 1
2
x12

)
N

(
x12, y; b − 1

2
x02

)

+ 2N
(

x02, y; b − 1
2
x12

)
N

(
x12, y; b − 1

2
x02

)]
.

Equation (1.5) describes a diffraction process initiated by
the dipole of the size x01 which subsequently dissociates
to two dipoles with sizes x02 and x12. The rapidity Y is
defined as Y = ln(1/x) 2.
The evolution (1.5) is subject to the initial conditions

at x = x0:

ND(r⊥, x0, x0; b) = N2(r⊥, x0; b). (1.6)

Namely, at an energy equal to the energy gap, diffrac-
tion is purely given by the elastic scattering as was stated
in (1.1).
Since at high energies color dipoles are correct degrees

of freedom [10] we can write the unitarity constraint

2N = ND + F, (1.7)

2 Note that in (1.5) and below we freely interchange between
variables x (x0) and Y = ln 1/x (Y0 = ln 1/x0) as formal argu-
ments of the functions N and ND. We hope this carelessness
does not cause any confusion to the reader

where the function F denotes contributions of all the in-
elastic processes. An important observation is that F satis-
fies the same equation as N [11,12] but with shifted initial
conditions [23]:

Fini = Nini −N2
ini. (1.8)

Another interesting quantity to study is the cross sec-
tion of a diffractive dissociation process with a fixed gap
or equivalently to a fixed mass:

� ≡ −∂ND/∂Y0. (1.9)

The function � was introduced in [23]. The authors of this
paper proposed a model in which � was shown to possess
a maximum when varying Y0 at fixed Y . Physically this
maximum means that at given Y there is a preferable mass
for the production. Below we will argue that the appear-
ance of the maximum is related to the scaling phenomena
to be displayed by the function ND.
The present paper is entirely devoted to the numer-

ical solution of (1.5). Various properties of the solutions
ND are investigated while our final goal computation of
the diffraction cross section is published separately [24].
In Sect. 2 the solution of (1.5) is presented. Section 3 deals
with the determination of the diffractive saturation scale.
Scaling phenomena are discussed in Sect. 4. We draw con-
clusions in Sect. 5.

2 Solution of the non-linear equation

In this section we report on the numerical solution of (1.5).
The method of iterations proposed in [16] is applied. The
constant value for the strong coupling constant αS = 0.25
is always used. The solutions are computed for 4×10−5 ≤
x0 ≤ 10−2 and within the kinematic region 10−7 ≤ x ≤ x0
and distances up to a few Fermi.
The function ND is formally a function of four vari-

ables: the energy gap x0, the Bjorken variable x, the trans-
verse distance r⊥, and the impact parameter b. We as-
sume the impact parameter b to be much larger than a
typical dipole size: r⊥ � b. Within this assumption the b-
dependence is parametric only because the evolution ker-
nel does not depend on b. However, the problem is still
complicated and requires a very long numerical run. In
order to simplify the problem we will proceed similarly
to the treatment of the b-dependence of the function N
[16]. In that paper we assumed the function N to preserve
the very same b-dependence as introduced in the initial
conditions:

N(r⊥, x; b) =
(
1− e−κ(x,r⊥)S(b)

)
, (2.10)

with S(b) being a dipole profile function inside the tar-
get (In the present work S(b) = exp(−b2/R2) with R2 =
10GeV−2.) and the function κ being related to the “b = 0”
solution Ñ(r⊥, x):

κ(x, r⊥) = − ln(1− Ñ(r⊥, x)). (2.11)
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Fig. 1. The function ÑD plotted versus the dipole transverse size. The curves correspond to different values of x0: (a) x0 = 10−2;
(b) x0 = 10−3; (c) x0 = 10−4. The solid line is Ñ2

Ñ(r⊥, x) represents a solution of the very same non-linear
equation (see [11,12]) but with no dependence on the third
variable. The initial conditions for the function Ñ(r⊥, x)
are taken at b = 0. For the case of the proton target [16]
the ansatz in the form (2.10) was shown to be a quite
good approximation of the exact b-dependence of the so-
lution to the non-linear equation for N(r⊥, x; b). In [17]
we investigated the ansatz (2.10) for the gold target and
again found it to be a very good approximation at least
for impact parameters smaller than the target radius.
In order to be consistent with the initial conditions

(1.6) we assume the following b-dependence of ND:

ND(r⊥, x, x0; b) =
(
1− e−κD(x,x0,r⊥)S(b)

)2
, (2.12)

with

κD(x, x0, r⊥) = − ln
(
1−

√
ÑD(r⊥, x, x0)

)
. (2.13)

ÑD(r⊥, x, x0) represents a solution of (1.5) but with no de-
pendence on the fourth variable. The initial conditions for
the function ÑD(r⊥, x, x0) are set at b = 0 and κD(x0, x0,
r⊥) = κ(x0, r⊥). Since in the present paper we do not in-
tend to compute cross sections for which we would need
to perform the b integration, the accuracy of the ansatz
(2.12) will not be investigated here.
For each initial value of x0 the function ÑD(r⊥, x, x0)

is obtained after about ten iterations. Figure 1 shows the
solutions ÑD as a function of the transverse dipole size for
various values of x0 and x. The amplitude for the elastic

scattering Ñ2 [16] is plotted in the same graph. The ob-
tained numerical inequality Ñ2 ≤ ÑD ≤ Ñ is in perfect
agreement with the physical expectations for the diffrac-
tive dissociation cross section to be larger than the elastic
cross section. Another consistency check is the saturation
of the function ÑD which is a consequence of the unitar-
ity bound. In the black disk limit diffractive dissociation
is half of the total cross section.
It is worth to investigate the dependence of the solu-

tions obtained on the gap variable x0. To reach this goal
we plot the functionND as a function of the gap Y0 for var-
ious transverse dipole sizes and at fixed Y = 10 (Fig. 2).
At small sizes the solution depends strongly on x0 though
as we approach the saturation region this dependence dies
out.
It was stated in the Introduction that the function ND

equals 2N − F , where both functions N and F are solu-
tions of the same non-linear equation [11,12]. Thus it is
natural to compute 2N − F solving the non-linear evolu-
tion equation [11,12] with appropriate initial conditions.
A comparison with ND from (1.5) would be an ultimate
test for the correctness of the numerical procedures. Such
a test was successfully performed and we found an abso-
lute agreement (relative error less than 1%) between both
computations.

3 Saturation scale

Determination of the diffractive saturation scaleQD
s (x, x0)

from the solution ÑD is subject of this section. Unfortu-
nately, no exact mathematical definition of the saturation
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Fig. 2. The function ÑD plotted versus the gap Y0 at fixed rapidity Y = 10

Fig. 3. The saturation scale QD
s plotted versus x. The three curves correspond to the definitions (3.14) (lowest curve), (3.15)

(middle curve), and (3.16) (upper curve)

scale is known so far. In [16,25] several definitions of the
saturation scale Qs(x) were proposed which related the
saturation scale to the shape of the function Ñ . It is im-
portant to stress that it is not clear a priori whether QD

s
should coincide with Qs or not. We will proceed here in
the same spirit as in [25]. Namely, we propose several def-
initions of the saturation scale while the variety of the
obtained results will indicate the uncertainty in the defi-
nitions.
For a step-like function it is natural to define the sat-

uration scale as the position where it reaches half of the
maximum:
(1) Definition (a):

ÑD(RD
s , x, x0) = 1/2, QD

s ≡ 2/RD
s . (3.14)

The equality between the saturation radius RD
s and

the saturation scale QD
s is motivated by the double loga-

rithmic approximation. Though this approximation is for-
mally not justified, we still believe it to yield reliable esti-
mates provided QD

s is large enough. The definition (3.14)
is analogous to the one proposed in [16] N(2/Qs, x) = 1/2.
If we recall that ND = N2 at x = x0 and postulate
QD

s (x0, x0) = Qs(x0), then consistency requires
(2) Definition (b):

ÑD(2/QD
s , x, x0) = 1/4. (3.15)

An alternative definition of the saturation scale could
be one motivated by the Glauber–Mueller formula:
(3) Definition (c):

κD(2/QD
s , x, x0) = 1/2. (3.16)

The saturation scales deduced through the above def-
initions are depicted in Fig. 3. For given x0 the observed
hierarchy between the saturation scales obtained is an ob-
vious consequence of the definitions (3.14), (3.15), (3.16)
and the shape of the function ÑD (Fig. 1). Note that the
saturation scale is almost x0-independent.
It is important to learn about the x-dependence of

the saturation scale. To reach this goal, we assume the
following parameterization:

QD
s (x, x0) = QD

s0x
−λxβ

0 . (3.17)

In fact, the parameterization (3.17) is a good approxima-
tion for the values of the saturation scales obtained with

λ = 0.385± 0.015 and β = 0.045± 0.025.
Within the errors these powers coincide for all the satura-
tion scale definitions (3.14), (3.15), (3.16). The small value
for the power β is a numeric indication of the very weak
x0-dependence of the saturation scale. Its large relative
error results on one hand from numerical limitations and
on the other hand, this error signals a more complicated
x0-dependence than is given in (3.17).
It is important to stress that the obtained power λ

coincides with the corresponding power of the saturation
scale Qs [25].

4 Scaling phenomena

In [25] the function Ñ was shown to display the scaling
phenomenon. We present here a similar analysis for the
function ÑD. In the saturation region the scaling implies
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Fig. 4. The derivative functions ND
r (dashed line) and ND

y (solid line) as functions of the distance at fixed x0 = 10−2

Fig. 5. The derivative function ND
r as a function of the rapidity Y at x0 = 10−2

Fig. 6. The scaling as a function of the distance at fixed x0 = 10−2. The positive curves are ND
r /ND

rmin (dashed line) and
ND

y /ND
ymin (solid line). The dotted line is 40× RD

a

the amplitude to be a function of only one variable τ =
(r⊥ ·QD

s (x, x0))
2:

ÑD(r⊥, x, x0) = ÑD(τ). (4.18)

Let us define the following derivative functions assum-
ing the scaling behavior (4.18):

ND
y (r⊥, x, x0) ≡ −∂ÑD

∂Y
=
dÑD

dτ
τ
∂ ln(QD

s )
2

∂ lnx
, (4.19)

ND
r (r⊥, x, x0) ≡ r2⊥

∂ÑD

∂r2⊥
=
dÑD

dτ
τ, (4.20)

�(r⊥, x, x0) ≡ −∂ÑD

∂Y0
=
dÑD

dτ
τ
∂ ln(QD

s )
2

∂ lnx0
. (4.21)

If the scaling behavior (4.18) indeed occurs, then both
the ratios ND

y /N
D
r and �/ND

r are r⊥-independent func-
tions. Let us first consider scaling with respect to x. Fig-
ure 4 presents the derivatives ND

y and N
D
r as functions of

the distance r⊥ at fixed x0 = 10−2. Both functions ND
y

and ND
r have extrema placed at the same distance de-

pending on x. This is a consequence of the scaling behav-
ior (4.18), and (4.19) and (4.20). The extrema occur at
certain τmax, such that ÑD′(τmax) = −τmaxÑ

D′′(τmax).
In Fig. 4, τmax is approached by varying r⊥ at fixed x.
Alternatively it can be reached by varying x at fixed r⊥
(Fig. 5).
Consider now the ratio function RD

a :

RD
a (r⊥, x, x0) ≡ ND

y

ND
r

=
∂ ln(QD

s )
2

∂ lnx
. (4.22)

If the scaling phenomenon occurs the function RD
a is ex-

pected to be r⊥-independent. We study the scaling within
the distance interval 0.04GeV−1 ≤ r⊥ ≤ 10GeV−1 that
corresponds to 0.25GeV2 ≤ Q2 ≤ 2.5×103GeV2. Figure 6
presents the results on the scaling. The three lines corre-
spond to functions ND

r and N
D
y divided by their minimal
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Fig. 7. The function � versus distance at fixed
Y = 10

Fig. 8. The function � as a function of the ratio Y0/Y at fixed Y = 10

values within the interval, and the function RD
a multiplied

by the factor 40 to be seen on the scale.
The function RD

a is clearly observed to be a very slowly
varying function of r⊥ for all values of x and r⊥. Though
at fixed x the function RD

a cannot be claimed to be an
exact constant, its variations with r⊥ are very much sup-
pressed compared to the variations of the functions ND

r

and ND
y . For example, at x = 10

−5 within the given in-
terval the function RD

a changes by maximally 20%, while
within the very same interval both functions ND

r and N
D
y

change by several times. Then the relative fluctuation is
much less than 10%, which confirms the scaling. The phe-
nomenon holds with a few percent accuracy and it im-
proves at smaller x � 10−7 and in the deep saturation
region. However to observe this scaling behavior in these
regions is numerically more problematic since both deriva-
tives ND

r and N
D
y tend to zero.

The above analysis was performed for the fixed value
x0 = 10−2. Within the errors the function RD

a � −0.75±
0.08, constant independent on both r⊥ and x. Moreover,
if we repeat the same program but for different values
of x0, we discover quite similar scaling phenomena with
RD

a being numerically independent on x0 as well. This
observation implies

QD
s (x, x0) = QD

s0(x0)x
−λ, λ = 0.37± 0.04. (4.23)

Note that the value obtained for λ is in agreement with
the one determined in the previous section.
Let us now study the scaling behavior with respect to

the variable x0. To this aim we investigate the function
� which is related to the x0-dependence of the saturation
scale QD

s0. Assuming QD
s0 ∼ xβ

0 we predict � to have a
maximum at τ = τmin. Figure 7 displays the function � as
a function of the distance at fixed x = 4.54·10−5 (Y = 10).
In complete agreement with the scaling assumption (4.21)

the function � possesses a maximum with respect to r⊥
variations. The heights of the maxima are proportional to
β. Since τÑD′(τ)|τ=τmax � 0.2, β can be estimated to be
approximately 0.05 ± 0.02, which agrees with the value
deduced earlier.
We can learn more about the scaling if we consider

the function � as a function of x0 or the energy gap Y0.
In [23] a model was built in which the function � had
a maximum with respect to the Y0 variation at fixed Y .
We know now that this maximum is a consequence of the
scaling phenomena. The dependence of � on Y0 at Y = 10
is plotted in Fig. 8.
No maxima are observed on the plots of Fig. 8. In fact

this is a sign of the scaling violation so far avoided by
the discussion. The scaling with respect to x0 is not exact
at Y0 � Y . Due to its smallness (� ∝ β) the function
� is most sensitive to small deviations from the scaling
behavior:

ÑD(r⊥, x, x0) = ÑD
scaling(τ) + δÑD(r⊥, x, x0). (4.24)

In the kinematic region of the investigation variations of
the function δÑD with respect to r⊥ and x are small com-
pared to variations of ÑD

scaling. On the contrary, the deriva-
tive of δND with respect to Y0 is of the same order as the
derivative of ÑD

scaling. This is the origin of the large errors
of β and the x0 scaling violation at x0 � x.
In order to complete the analysis of the scaling we

plot the function ÑD as a function of τ at different val-
ues of x and x0 (Fig. 9). The overall normalization of the
saturation scale cannot be deduced from the scaling anal-
ysis only. We choose the following normalization: QD

s (x =
10−7, x0 = 10−2) = 20GeV. In Fig. 9 the cluster of the
curves correspond to the (x = 10−7, x0 = 10−2), (x =
10−5, x0 = 10−2), (x = 10−3, x0 = 10−2), (x = 10−7, x0 =
10−3), (x = 10−7, x0 = 10−4), and (x = 10−5, x0 = 10−3)
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Fig. 9. The function ÑD plotted versus τ for various values
of x and x0: x = 10−7, x0 = 10−2; x = 10−5, x0 = 10−2; x =
10−3, x0 = 10−2; x = 10−7, x0 = 10−3; x = 10−7, x0 = 10−4;
and x = 10−5, x0 = 10−3

Fig. 10. The saturation scale deduced from (4.25). The dif-
ferent curves correspond to x0 = 10−2 (the upper curve), 10−3

(middle curve) and x0 = 10−4 (the lowest curve)

curves. The approximate independence of the curves on
the values of x and x0 is another and probably most illus-
trative manifestation of the scaling phenomena.
Finally we propose yet another definition of the satu-

ration scale based on the above presented scaling analysis.
It is natural to define the saturation radius at the position
where τÑ ′(τ) has a maximum, namely at τmax:
(4) Definition (d):(

∂(τÑ ′(τ))
∂r2⊥

)
r2

⊥=4/(QD
s )2

= 0. (4.25)

The saturation scale obtained from (4.25) is depicted
in Fig. 10. Note again the weak dependence on the value
of x0.

5 Conclusions

The non-linear evolution equation (1.5) is solved numeri-
cally by the method of iterations. The solutions obtained
are in agreement with the unitarity constraints: the
diffraction dissociation is larger than just the elastic scat-
tering but smaller than or equal to half of the total.
The diffractive saturation scale QD

s is estimated from
the solutions of (1.5) based on four different definitions of
the saturation scale. Though there exists a significant un-
certainty in the absolute values of the scale its x-
dependence is found to be the same as of theQs-saturation
scale deduced from the non-linear equation for Ñ [11,12].
In fact this result is quite natural. The dependence of the
saturation scale on x is an entire property of the evolution

equation and it should not depend on both initial condi-
tions and the saturation scale definition. The saturation
scale QD

s is discovered to be almost independent on the
minimal gap x0.
Both saturation scales Qs and QD

s are proportional to
x−λ with λ � 0.38. This result is certainly very sensitive
to the value of αs and it was obtained at fixed αs = 0.25.
The double logarithmic prediction of [15] is λ = 2αsNc/π,
which for the given value of αs leads to λ � 0.5. It is worth
to investigate numerically the dependence of the power λ
on αs. To reach this goal we need to solve (1.5) at different
values of αs, which is our nearest future project.
The scaling phenomena with respect to all variables

were studied in detail. The scaling with respect to x is
well established. It holds with a few percent accuracy in
the whole kinematic region investigated. The discovered
scaling should manifest itself in the experiments on diffrac-
tion, and hence it would be interesting to search for it in
the FD

2 (x,Q
2)/(Q2S) experimental data (S stands for the

target transverse area).
The numerically observed small scaling violation shows

up when we consider the scaling with respect to x0. This
happens due to the weak sensitivity of the solutions to the
variation of x0. As a result, the variations of the solutions
with respect to x0 are of the same order as the scaling
violation. The scaling sets in at x � x0 but is violated at
x ∼ x0.
The detailed analysis of the ratio between the total

diffractive dissociation and the total DIS cross section is
presented in a separate publication [24]. Our computations
show that this ratio happens to be independent on the
central mass energy in agreement with the experimental
data [2]. This independence can be traced back to the
scaling property displayed by the amplitudes N and ND

and to the fact that both saturation scales depend on x
with the very same power λ.
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